Monday, December 19, 2011

Diffrent types of RAID Levels


RAID Levels

RAID -0

Advantages

  • RAID 0 offers great performance, both in read and write operations. There is no overhead caused by parity controls.
  • All storage capacity can be used, there is no disk overhead.
  • The technology is easy to implement.

Disadvantages

RAID 0 is not fault-tolerant. If one disk fails, all data in the RAID 0 array are lost. It should not be used on mission-critical systems.

RAID 1: mirroring

 

Data are stored twice by writing them to both the data disk (or set of data disks) and a mirror disk (or set of disks) . If a disk fails, the controller uses either the data drive or the mirror drive for data recovery and continues operation. You need at least 2 disks for a RAID 1 array.

RAID 1 systems are often combined with RAID 0 to improve performance. Such a system is sometimes referred to by the combined number: a RAID 10 system.

Advantages

  • RAID 1 offers excellent read speed and a write-speed that is comparable to that of a single disk.
  • In case a disk fails, data do not have to be rebuild, they just have to be copied to the replacement disk.
  • RAID 1 is a very simple technology.

Disadvantages

  • The main disadvantage is that the effective storage capacity is only half of the total disk capacity because all data get written twice.
  • Software RAID 1 solutions do not always allow a hot swap of a failed disk (meaning it cannot be replaced while the server keeps running). Ideally a hardware controller is used.

Ideal use

RAID-1 is ideal for mission critical storage, for instance for accounting systems. It is also suitable for small servers in which only two disks will be used.

RAID 3

On RAID 3 systems, datablocks are subdivided (striped) and written in parallel on two or more drives. An additional drive stores parity information. You need at least 3 disks for a RAID 3 array.
Since parity is used, a RAID 3 stripe set can withstand a single disk failure without losing data or access to data.

                                                

Advantages

  • RAID-3 provides high throughput (both read and write) for large data transfers.
  • Disk failures do not significantly slow down throughput.

Disadvantages

  • This technology is fairly complex and too resource intensive to be done in software.
  • Performance is slower for random, small I/O operations.

Ideal use

RAID 3 is not that common in prepress.

RAID 5

RAID 5 is the most common secure RAID level. It is similar to RAID-3 except that data are transferred to disks by independent read and write operations (not in parallel). The data chunks that are written are also larger. Instead of a dedicated parity disk, parity information is spread across all the drives. You need at least 3 disks for a RAID 5 array.
A RAID 5 array can withstand a single disk failure without losing data or access to data. Although RAID 5 can be achieved in software, a hardware controller is recommended. Often extra cache memory is used on these controllers to improve the write performance.

Advantages

Read data transactions are very fast while write data transaction are somewhat slower (due to the parity that has to be calculated).

Disadvantages

  • Disk failures have an effect on throughput, although this is still acceptable.
  • Like RAID 3, this is complex technology.

Ideal use

RAID 5 is a good all-round system that combines efficient storage with excellent security and decent performance. It is ideal for file and application servers.

RAID 10: a mix of RAID 0 & RAID 1

RAID 10 combines the advantages (and disadvantages) of RAID 0 and RAID 1 in a single system. It provides security by mirroring all data on a secondary set of disks (disk 3 and 4 in the drawing below) while using striping across each set of disks to speed up datatransfers.
       
                                                                
                                                                             

What about RAID 2, 4, 6 or 7?

These levels do exist but are not that common, at least not in prepress environments. This is just a simple introduction to RAID-system. You can find more in-depth information on the pages of ACNC or storage.com.



    FSMO roles

Domain-specific Roles
    1. RID(relative identifier) Master
    2. Infrastructure Master
    3. PDC(Primary Domain Controller) Emulator

Forest –wide
  1. domain naming master
  2. Schema Master


No comments:

Post a Comment